ML Engineer

Bengaluru, India

Full Time Senior-level / Expert USD 131K - 240K *

Bosch Group

Moving stories and inspiring interviews. Experience the meaning of "invented for life" by Bosch completely new. Visit our international website.

View company page

Company Description

Do you want beneficial technologies being shaped by your ideas? Whether in the areas of mobility solutions, consumer goods, industrial technology or energy and building technology - with us, you will have the chance to improve quality of life all across the globe. Welcome to Bosch.

Job Description

Job Description

Total Exp in years - 2 – 4

 

Responsibilities:

  • Work on end-to-end ML Lifecycle from acquiring data, data cleaning, model building and deployment of models
  • Understanding business objectives and developing models that help to achieve them, along with metrics to track their progress
  • Verifying data quality, and/or ensuring it via data cleaning
  • Experience in building Machine Learning and Deep Learning models either with predictive algorithms, Timeseries, NLP or Computer Vision and deployment of the same
  • Analyzing the ML algorithms that could be used to solve a given problem and ranking them by their success probability
  • Exploring and visualizing data to gain an understanding of it, then identifying differences in data distribution that could affect performance when deploying the model in the real world
  • Finding available datasets online that could be used for training and data augmentation pipelines
  • Defining validation strategies, defining preprocessing or feature engineering to be done on a given dataset
  • Training models and tuning their hyperparameters
  • Analyzing the errors of the model and designing strategies to overcome them
  • Deploying models to production
  • Ensure code paths are unit tested, defect free and integration tested
  • Data science model review, run the code refactoring and optimization, containerization, deployment, versioning, and monitoring of its quality.
  • Design and implement cloud solutions, build MLOps on Azure
  • Work with workflow orchestration tools like Kubeflow, Airflow, Argo or similar tools
  • Data science models testing, validation and tests automation.
  • Communicate with a team of data scientists, data engineers and architect, document the processes.

 

Mandatory Skills:

  • 2 – 4 years of experience in Data Science and 1-2 years as ML Engineer
  • Hands-on experience of 2+ years in writing object-oriented code using python
  • Extensive knowledge of ML frameworks, libraries, data structures, data modeling, and software architecture.
  • In-depth knowledge of mathematics, statistics, and algorithms
  • Experience working with machine learning frameworks like Tensorflow, Caffe, etc.
  • Understanding of Data Structures, Data Systems and software architecture
  • Experience in using frameworks for building, deploying, and managing multi-step ML workflows based on Docker containers and Kubernetes.
  • Experience with Azure cloud services, Cosmos DB, Streaming Analytics, IoT messaging capacity, Azure functions, Azure compute environments, etc.
  • Exposure to deep learning approaches and modeling frameworks (PyTorch, Tensorflow, Keras, etc.)

Qualifications

BE/MCA or Mtech

Additional Information

  • 2-4 years of experience in Data Science and 3+ years as ML Engineer
  • Rich hands-on experience of 5+ years in writing object-oriented code using python
  • Extensive knowledge of ML frameworks, libraries, data structures, data modeling, and software architecture.
  • In-depth knowledge of mathematics, statistics and algorithms
  • Experience working with machine learning frameworks like Tensorflow, Caffe, etc.
  • Understanding of Data Structures, Data Systems and software architecture
  • Experience in using frameworks for building, deploying, and managing multi-step ML workflows based on Docker containers and Kubernetes.
  • Experience with Azure cloud services, Cosmos DB, Streaming Analytics, IoT messaging capacity, Azure functions, Azure compute environments, etc.
  • Exposure to deep learning approaches and modeling frameworks (PyTorch, Tensorflow, Keras, etc.)

* Salary range is an estimate based on our salary survey 💰

Tags: Airflow Azure Caffe Computer Vision Data quality Deep Learning Docker Engineering Feature engineering Industrial Keras Kubernetes Machine Learning Mathematics MLOps NLP Pipelines Python PyTorch Statistics Streaming TensorFlow Testing

Region: Asia/Pacific
Country: India
Job stats:  27  5  0
  • Share this job via
  • or

More jobs like this

Explore more AI/ML/Data Science career opportunities

Find open roles in Artificial Intelligence (AI), Machine Learning (ML), Natural Language Processing (NLP), Computer Vision (CV), Data Engineering, Data Analytics, Big Data, and Data Science in general, filtered by job title or popular skill, toolset and products used.