Machine Learning Engineer, Payment Intelligence

Seattle, Remote

Applications have closed
Stripe logo
The new standard in online payments

Posted 7 months ago

Machine Learning Engineer, Payment Intelligence

The Payment Intelligence group is responsible for optimizing every ounce of net value out of all potential transactions. We own products like Radar from end to end and work across the technical stack: from crafting machine learning models over our users’ data, to integrating ML intelligence and serving real-time predictions as part of Stripe’s infrastructure, to building user-facing product surfaces like dashboards and controls.

Stripe builds economic infrastructure for the internet, supporting businesses worldwide ranging from fledgling upstarts to Fortune 500s. These businesses place significant trust in Stripe to accelerate their success. This makes the user-facing teams at Stripe mission critical: these teams provide fast, accurate answers in the context of our users’ businesses across phone, email, and chat.

You will:

  • Understand our users’ needs and use this to formulate specific machine learning problems that solve business problems; evaluate model performance with an eye toward user value.
  • Build and improve the accuracy of predictive models, and work on feature definition and computation, training pipelines, evaluation, and model deployment
  • Propose, implement, and incorporate new features and sources of data
  • Work on anything it takes to solve problems and delight users both internally and externally. You’ll work with a wide range of systems, processes and technologies to own and solve problems end-to-end. You will also do some product work and have the opportunity to deeply understand the entire product, not only the machine learning aspects.
  • Uphold our high engineering standards and bring consistency to the many codebases and processes you will encounter

We’re looking for someone who has:

  • An advanced degree in a quantitative field (e.g. stats, physics, computer science) and some experience in software engineering in a production environment, or 4+ years industry experience doing software development on a data or machine learning team
  • Knowledge about how to manipulate data to perform analysis, including querying data, defining metrics, or slicing and dicing data to evaluate a hypothesis
  • Pride in working on projects to successful completion involving a wide variety of technologies and systems
  • Empathy with their users and interest in working directly with them, and an interest in doing some product engineering work in addition to ML engineering
  • The ability to thrive in a collaborative environment involving different stakeholders and subject matter experts
  • Enjoyment in working with a diverse group of people with different expertise
  • Founded a company of their own, or has worked at a start-up

What’s it like to work at Stripe?

Stripe is helping the internet fulfill its potential as a platform for economic progress by building software tools that accelerate global economic access and technological development. Stripe makes it easy to start, run and scale an internet business from anywhere in the world.

Stripe is, at its heart, an engineering company. To provide a missing pillar of core internet infrastructure, we hire people with a broad set of technical skills (and from a wide variety of backgrounds) who are ready to take on some of the most challenging problems in the industry – from reliably handling 100M API requests per day, to building adaptive machine learning as a result of years of data science and infrastructure work, and enabling entrepreneurs worldwide to start a global internet business.

We look at Stripe as a constant work in progress and the same is true of our people; for all of us, we believe the best is yet to come. We’re here to support each other in our curiosity and creativity – which we pursue through thoughtful discussion and knowledge-sharing among a diverse set of peers and colleagues.

We encourage all engineers to transition teams once every year and a half and also take on short-term projects with other teams across Stripe. This enables engineers to learn how different parts of Stripe work while also establishing stronger ties and cross-pollination between groups.

We contribute to existing open-source projects and the people working on them, and we release several tools as open-source. We want to work in a company of warm, inclusive people who treat their colleagues exceptionally well. The kind of people who are committed to going out of their way to help other Stripes in the short-term and pushing them to improve over the long-term (by helping them to get better at what they do).

We’re a highly cross-functional organization and view that as part of the fun: we design our space to encourage as much collaboration as possible. We have long tables in the kitchen for a reason (to enable everyone to meet new people and learn from them). We also have a culture of transparency that we carry through to email communication, ensuring that Stripes all around the world have the information they need to make good local decisions.

In both our products and our people, we aim to reflect, represent and advocate for all of our users, globally. Our users transcend geography, culture and language; what we share, collectively, is a drive to create a fairer, more economically interconnected world.

Job tags: Engineering Machine Learning ML
Job region(s): North America Remote/Anywhere
Job stats:  70  11  0

More AI/ML/Data Science position highlights