Staff Software Engineer, Machine Learning Platform

San Francisco

Sift logo
Sift
Apply now Apply later

Posted 1 week ago

About the team:

At Sift we enhance trust and safety in the digital world with our AI driven technology platform. Our products deliver payment protection, ensure content integrity, and protect account defense for businesses around the world. The Machine Learning Platform team exists to enable product teams to construct and operate their production machine learning services as effectively as possible.

The team does this by providing a platform which handles the common needs of the product teams including production system integration, model training, model availability, health and monitoring infrastructure for model serving, and a streamlined model release process.

What you’ll do:

As a Staff Engineer in the Machine Learning Platform team you will build tools and processes to manage, improve, and rapidly scale our platform. Specifically, you will

  • Design and build tools and processes to make the release of new machine learning models fast, easy, safe, and minimally disruptive.
  • Lead architecture discussions to meet the requirement to serve hundreds of machine learning models at thousands of queries per second.
  • Ensure that our systems can continue to scale rapidly while addressing rapidly evolving product team needs.
  • Implement scalable, low-latency, high-throughput, fault-tolerant, extensible, and easily maintainable data processing pipelines for both batch and real-time systems.
  • Champion and deliver cross-company machine learning initiatives.
  • Motivate, listen and empathize, and help engineers and data scientists to excel.

What would make you a strong fit:

  • 8+ years of professional software development experience or an advanced degree in Computer Science (or a related field) with 5+ years of experience.
  • Experience building highly available low-latency systems using Java, Scala, C++ or other object-oriented languages.
  • Experience working with large datasets and best in class data processing technologies for both stream and batch processing, such as Apache Spark, Apache Beam, MapReduce.
  • Familiarity with practical challenges in ML systems such as feature extraction and definition, data validation, training, monitoring, and management of features and models.
  • Practical knowledge of how to build end-to-end ML workflows.
  • Strong communication & collaboration skills, and a belief that team output is more important than individual output.
  • Self-starter, with a quick learning curve.

Bonus points:

  • Experience with building an ML feature store for batch and real-time aggregation/serving.
  • Knowledge of GCP or AWS cloud stack for web services and big data processing.

Interested in learning more about our engineering teams? Check out our posts: https://engineering.sift.com/articles

A little about Sift:

Sift is the leading innovator in Digital Trust & Safety.  Hundreds of disruptive, forward-thinking companies like Airbnb, Zillow, and Twitter trust Sift to deliver outstanding customer experience while preventing fraud and abuse.

The Sift engine powers Digital Trust & Safety by helping companies stop fraud before it happens. But it’s not just another anti-fraud platform: Sift enables businesses to tailor experiences to each customer according to the risk they pose. That means fraudsters experience friction, but honest users do not. By drawing on insights from our global network of customers, Sift allows businesses to scale, win, and thrive in the digital era.

Benefits and Perks:

  • Competitive total compensation package
  • 401k plan
  • Medical, dental and vision coverage
  • Wellness reimbursement
  • Education reimbursement
  • Flexible time off

Sift is an equal opportunity employer. We make better decisions as a business when we can harness diversity in our experience, data, and background. Sift is working toward building a team that represents the worldwide customers that we serve, inclusive of people from all walks of life who can bring their full selves to work every day.

This document provides transparency around the way in which Sift handles personal data of job applicants: https://sift.com/recruitment-privacy

Job tags: AI AWS Big Data Engineering Java Machine Learning ML Scala Spark